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We consider a nonlinear reaction-diffusion model: n Brownian particles move 
independently in R a and eventually die. The interaction, of binary type, affects 
only the death rate. The radius of interaction goes to zero as the number of par- 
ticles increases and we characterize a wide range of speeds at which the radius 
goes to zero. Within this range we show a law of large numbers for the empirical 
distributions of the alive particles. The limit is independent of the choice of the 
speed and it is characterized as the solution of a nonlinear reaction-diffusion 
equation. 
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law of large numbers. 

1. I N T R O D U C T I O N  

In this paper we study the simplest case of a nonlinear reaction-diffusion 
model: particles move independently; they perform Brownian motions in 
Re; the only reaction is a binary one; it leads to the death (disappearance) 
of one of two particles which are close to each other; the rate at which this 
happens depends only on the distance of the two reacting particles. 
Formally, if xi(t) denotes the position of the ith particle at time t and n is 
the number of particles present at the beginning, then the ith particle dies 
at a rate 

rn(t, xi) = 1/n ~ q.(xj(t)-xi(t)) ~j,.(t) (1.1) 
j r  

where ~j,.(t) is the indicator of particle j being alive at time t and q. is a 
given positive function on R a. 
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We are interested, as n tends to infinity, in a law of large numbers (or 
"propagation of chaos") for the empirical measure 

Mn(t) = 1/n ~, 6(xj(t)) ~j,n(t) (1.2) 
J 

In particular, we ask which dependence on n implies such a law of large 
numbers: we fix a function q on R d satisfying 

q>~O, f q (x)dx=c (1.3) 

If {a.} is some sequence tending to infinity, we define 

q.(x) = (a.) d q(anx) (1.4) 

From heuristic considerations, the limit of Mn(t), if it exists, is expected to 
be of the form u(t, x) dx, where u satisfies the nonlinear reaction-diffusion 
equation 

(O/~t)u = 1/2 A u -  cu 2 (1.5) 

The problem can now be stated as follows: for which choice of {a,} 
does the limit equation (1.5) hold? Or: at which speed is the radius of inter- 
action between particles (if we think of q as the indicator of a ball) allowed 
to shrink in order to obtain (1.5)? 

The main result is the theorem in Section 2, which states that, under 
slight technical assumptions, the following condition on {an}, independ- 
ently of q, suffices for a law of large numbers: 

if d =  1 {an} goes to infinity, without any restriction 

if d =  2 log(a,) = o(n) (1.6) 

if d>~3 a,=o(n 1/(d-2)) 

A recent paper of Sznitman (6) (see also Lang and Nguyen (2)) considers 
the following variant of our model (due originally to Smoluchowski(7)): 
death occurs instantaneously whenever a particle approaches another by a 
distance Pn. He shows that the correct choice for Pn, in order to get a non- 
trivial limit equation of the form (1.5), is 

d = 2  p , = e x p ( - c l n )  
(1.7) 

d>~3 pn=c2n 1/(a-2) 

with some congtants cx and c2. 
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So we still might expect for our model a reaction-diffusion equation of 
the same type if we make the "extreme" choice an = pn 1, with Pn given by 
(1.7); but it is clear that then the coefficient c of the quadratic term in (1.5) 
will have to be replaced by a constant which reflects in a much finer way 
the geometry of q (in refs. 2 and 6 the Newtonian capacity of a ball was the 
decisive quantity). It is obvious from refs. 2 and 6 that if {p, } shrinks faster 
than (1.7), in the limit no reaction at all would take place, since the 
particles would no longer meet each other. 

From these considerations it is evident that our model with {a,,} given 
by (1.6) is a certain simplification of ref. 6, a step in the "mean-field" direc- 
tion if we compare it with the variant an=p21, Pn given by (1.7), which 
would be more closely related to ref. 6. On the other hand, we think that 
our method of studying the accumulated risk process (see next paragraph) 
and showing its deterministic character in the limit is a natural tool to 
apply here; and since in the case an = p2 ~ the risk process obviously would 
no longer converge to a deterministic one, we may say that in a certain 
sense our results are sharp. (Note also that the notion of risk process is 
meaningless for the model of Sznitman; death is defined there only through 
the trajectories, without an additional random mechanism.) 

The reason why condition (1.6) plays a role may be understood by the 
following argument. One has to look at the "accumulated risk" of a particle 

R,(t, x i )=  1/n ~ qn(xj(s)-  xi(s)) ~j,n(s) ds 
j~ i  

(1.8) 

and consider whether a law of large numbers for Rn(t, xi) holds in the sense 
that it becomes, in the limit of large n, a deterministic function of the 
trajectory xi(s), s ~< t, namely [see (4.1)] 

R(t, xi) = c u(s, xi(s)) ds (l.9) 

This calculation in a simplified form where all the ~j,n(t) appearing in the 
definition (1.1) are replaced by 1 is carried out in Lemma 3.3 (take v =0) ;  
such a law holds if, for any fixed t, 

f~ ds f q.(y) dy f q.(z) dz p[2s, z - y]  = o(n) (1.10) 

where p[-2s, z - y ]  is the transition density of the difference of two inde- 
pendent Brownian motions. 

If, in contrast, one chooses a strategy of proof which involves the 
"hazard rate" rn(t, xi) (not the accumulated risk) and shows that it is close 
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to a deterministic function of x i for each t, one has to impose sharper 
conditions on {a,}; see, e.g., ref. 1, where d =  1, an=cons t  .n. 

A last remark on the term "moderate interaction": we found that 
terminology in a paper of Oeschl~iger [5]  (see also M616ard and Roelly- 
Coppoletta(3)), though in a somehow different context of an interaction 
causing an additional drift term for each Brownian motion instead of 
death. Also there, a wide range of speeds at which the radius of interaction 
goes to zero was characterized; it was shown that inside this range the 
limiting equation is always the same. It is easy to see that the limiting 
equation in refs. 3 and 5 as well as in our case would also show up if one 
first takes the Vlasov-McKean limit, in which the radius of interaction 
is fixed (corresponding, in our case, to an = 1; compare Nappo and 
Orlandi (4)) and only then takes the limit in which the radius of interaction 
goes to zero (this corresponds, in our case, to q converging to a delta 
function through the sequence q~, without any further restriction on {an}). 

The paper is organized as follows: in Section 2 notations and assump- 
tions are introduced and the theorem is stated. Auxiliary results needed for 
the proof of a more general character (for example, the basic Lemma 3.3) 
are contained in Section 3. In Section 4 we give the main steps of the proof 
of the theorem, whereas technical estimates are collected in Section 5. 

2. DESCRIPTION OF THE M O D E L  A N D  RESULTS 

The microscopic model we consider consists of a system of n random 
particles (x~)i= ~ ...... which move as independent Brownian motions in R a 
and die according to a rate which is of local mean-field type depending on 
the configuration of the system. Each particle is represented by the process 
(xi, ~,,,)i=1 ....... where the ~.n are point processes taking values in {0, 1} 
defining the state of the particles: dead or alive. 

To define more precisely these processes, we introduce the probability 
space 

~2 = ( c (  E0, T] ,  R ") x R + )~ 

with the canonical filtration and the probability 

P(dcn)= @ [P(de)~)| (2.1) 
i - -  1, oo 

with P the probability measure associated with the Brownian process with 
initial distribution rCo(x) dx. We denote by co i and a,. the canonical 
variables: the coi are the independent Brownian processes and the cr i are 
exponential times independent of each other and of the o)i. 
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In this setting we define in D([-0, T] ,  {0, 1}) the process ~i,, as the 
strong solut ion of 

~i.n(t) = I{1/n ~j~i I~ qn(Xj(S)- x i ( s ) ) .  ~j,n(s) ds < r (2.2) 

where IA is the indicator  function of the set A and 

q,(x)  = (a , )  d q(a ,x )  (2.3) 

with {a , )  a divergent sequence and q e L  ~ c~H -1 a nonnegat ive function; 
here H 1 is the Sobolev space of functions g on R a such that, denoting by 
~(~o) the Four ier  t ransform of g, ~ [~(~)[2 (1 +c02) -1 &o is finite. 

Remark.  Note  that, when d =  1, if q is integrable, then q~  H ~ is 
automatical ly satisfied. 

We set 

We define the processes r as 

c = f q(x) dx (2.4) 

where 

~i(t) = I{R~,, x,)< ~i} (2.5) 

R(t, xi) = c u(s, xi(s))  ds (2.6) 

with u the solution of 

(~/Ot)u = 1/2 Au - cu2; u(0, x) = 7ro(x ) (2.7) 

We will prove the following result for this model. 

T h e o r e m .  Suppose that  Zo e L~(Rd) ,  q >~ 0, q e L 1 c~ H -  1, qn defined 
as in (2.3), and {a,} a divergent sequence; moreover ,  if d >  1, assume that  

if d =  2, log(a , )  = o(n) 
(2.8) 

if d>~ 3, an = o(n 1/(d-2)) 

Then, for every m >~ 1, 

(Xi' ~i,n)i= 1 . . . . . . .  --~ ( X i ,  ~i)i= 1 . . . . . .  a s  n ~ 
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in probability in the space (I2, P), with respect to the Skorohod metric in 
D([0, T], {0, 1}), for any fixed T>0 .  

Remark. 
equivalent to 

Convergence in probability of ~, .  to ~e is obviously 

oE[t~, .( t)-r  as n ~  (2.9) 

which implies that, for any m ~> 1 and F~ E Cb(D([0, T], {0, 1 })) 

Li=l,m i m F"(r as n--* oo 

i.e., what is usually called propagation of chaos, since the x~ have been 
taken independent. 

3. A U X I L I A R Y  R E S U L T S  

For analyzing the problem it is convenient to set 

R.(t, xi) = 1/n ~ f '  q.(xj(s) - xi(s)) ~j,n(S) ds 
j~i'JO 

(3.1) 

R.(t, x;) is a functional of the processes which counts the "integrated risk" 
felt by the particle with trajectory x~ up to time t. In this setting the 
definition (2.2) of the process ~g,. becomes 

r = I ~R.(,, x,) < ~,} (3.2) 

It is natural to achieve the convergence of ~e.. through the convergence of 
the risk R.(t, xi) to the limit risk R(t, xi), (2.6), which defines the limiting 
indicator of a particle being alive, 

~i(t) = I~R(,, xi)<~,~ 

The following lemma gives the relation between processes defined through 
risks functionals, and the risk functionals. 

Lemma 3.1. Let a be an exponential time and for j =  1, 2 let Sj be 
nonnegative, nondecreasing, right continuous random functions. Define for 
j =  1, 2 and t E [-0, T] 

~/j(t) = I~sAt)<o ~ 
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Then, for any  e > 0 

I~l(t) - q2(t)l ~< l/e 131(0- -  S2(t)l + I{isx(,)_~ I ~ 1  

Moreover ,  if $1 is independent  of a, then, for any e > 0, 

E [ l q l ( t )  - q2(t)[ ] ~< 1/5 E [ I S , ( t )  - S2(t)[ ] + 25 

Remark. If $1 and $2 are bo th  independent  of  a, one has obviously  
the simpler relat ion 

Er I,Tl(t) - .2(t)l ] ~< E[  IS,(t) - S2(t)l ] 

but  in the sequel we need a relat ion between qj and Sj wi thout  such an 
assumption.  

Proof of Lemma 3.1. We have 

[q~(t) - r/a(t)[ = l{&(t ) < a ~< Sz(t)} + l{s2r o.< s,(,)} 

= I { i s ~ ( t ) _ s 2 ( t ) l  ~ ~}(I{s,(,) < ~ ~ s:(,)} + I{s2(,) < ~.< s~(t~}) 

+ I{isl(t)_Sz(t)E >e}(I{sl(t)<~<~s2(t)} + I{sz(t)<,r<~sl(t)}) 

~< I{Is~(,) s2(,)l ~,}(I{s~(,)<~.<s2(,)} + I{s2(,)<o.<s=(,)~) 

+ I{Is~(,)-s2(t)l >e} 

~< I{Is~(t)--~l ~ ~} + ]S~(t) -- $2(t)[/5 

Therefore  we have that  

E [ I n , ( t ) -  n~(t)l ] ~< 1/~ E [ I S I ( t ) -  S2(t)l] + P [ I S ~ ( t ) -  ~l ~< 5] 

Moreover ,  if F is the distr ibution function of Sl( t) ,  taking into account  the 
independence of S~(t) and a, we have 

f o  r P[ - [S l ( t ) - a [ - . .<5 ]  = dF(x) j(~ ~)~oe-~ ds<<.25 

In the following we will use the following general izat ion of L e m m a  3.1. 

I _ e m m a  3.2 .  If  S: and qj are defined as in L e m m a  3.1 and  if S 
satisfies the same hypotheses  as Sj, then 

I~ / l ( t ) -  .2(t)l  ~< 1/5 1 5 1 ( 0 -  S(t)[ + 1/5 I S 2 ( t ) -  S(t)l + I{Is(o_ ~ I ~ }  
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ProoL The proof is similar to the previous one, considering that 

[ r / l ( t ) -  ~/2(t)l = (I{sl( ,)<~ s2(n; + I{s2(t)<a<~sl(t)}) 
• (I{ISl(t)-s(t)l  <~} + I{Isa(t)-S(t)l >c}) 

• (I{IS2(t)-s(t)r <~e} + I{Is2(t)-S(t)l >e}) 

To understand the constraints (2.8) on {an}, we consider a simplified 
model: we consider a particle x i in an environment where all the other 
particles xj die independently of each other with a rate v(t, xy(t)) at time t. 
It is easy to see that, under these constraints, the risk Sn(t , xi) felt by the 
particle xi converges in Lz(E2, P) to a limit risk which depends only on the 
trajectory x; and does not depend on all the other trajectories, namely: 

k e m m a  3.3. Define in ((2, P), f o r j # i ,  

rt+(t) = I{f 6 o<s, xj<s)l d, < ~j} (3.3) 

with v ~ L + and nonnegative, and define 

J2 S.(t, x~) = 1/n ~ q~(xj(s) - xs(s)) ~j(s) ds 

Then, it {a.} satisfies the growth conditions (2.8), 

s u p  E S.(t,x~)-c u(s,x~(s))ds --,0 as  n - - , o o  
O<~t<~T 

where u is the solution of 

(O/Ot)u = 1/2 Au - vu; u(O) = ~o (3.4) 

Proof. We have 

ru = 1/n 2 ~ E q.(xs(S)- xi(s)) qs(s) ds 
j # i  L[- "jO 

+,lo z Err; q,(xs(s)-  xi(s) ) qj(s) ds 
h~i  Lou 

x ~ qn(xh(r)--xi(r) ) ~h(r) dr] 

+ E c L/is , x i ( s ) )  ds 

I.r; So ] -2(ltn) ~ E q,,(xs(s)-x,(s))tls(s)dsc u(r>xi(r))dr 
j@# 
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<~l/nEI{foq,,(xj(s)-xi(s))qj(s)ds} 2] 

+ (n-1)/n E IE If~ qn(Xj(S)- Xi(S)) rlj(s) ds xi 1 

+2(n-1)/nE c u(s, xi(s))ds c u(s, xi(s))ds 

-- E [ Io q~(xj(s) - xi(s) ) rlj(s) ds X/J}] 

+ l/nE[{C loU(S, Xj(s))ds} 2] 

Let us denote by I1, I2, I3, I4 the four terms in this expression. The quan- 
tity I1 can be expressed in terms of {a,}: 

E qn(Xl(S)-- x2(s)) ds is bounded for d =  1 

= O(log an) for d =  2 

=O(a~ -2) for d~>3 

Indeed, letting p[s, y - x ]  be the transition probability of a standard 
Brownian motion, and noting that x l - x 2  is a Brownian motion with 
diffusion coefficient 2 and initial probability density n ,  = no * fro (~o: no 
reflected at 0), which is still bounded by Ilnoll ~,  we have 

E [ { fo qn(xl(s)- x2(s) ) ds} 2] 

= 2E [ f~ qn(xl(s)- x2(s) ) ds fo qn(xl(r) - x2(r) ) dr] 

=2 f~ ds f~ dr f rc,(x) dx f p[2r, y - x ]  qn(y) dy 

x f p[2(s - r), z -- y] q,,(z) dz 

= 2  f~ ds ; qn(y) dy ; q~(z) dz f p[2r, x -  y] Tz,(x) dx 

f2 x dr p [ 2 ( s -  r), z -  y]  

<~211%lt~ f~ ds f q,,(y) dy f qn(z)dzG,(z- y ) (3.5) 

where Gt(z) = ~. ~o ds p[2s, z]. 

822/55/3-4-8 
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Then, to get the assertion, we have to use the same kind of estimate 
as in Lemma 5.2 and to take into account that qn(x)= (an)aq(an x) and the 
growth conditions (2.8) on {a,}. 

The terms I2 and I3 converge to zero; indeed, we have 

E[qn(xj(s) - xi(s)) qy(s) I xi] 

= f qn(z - xi(s)) u(s, z) dz (by Feynman-Kac formula, after 
integrating over ai) 

t" 
= J q(y) u(s, y/an + xi(s)) dy < C I1~oll co (3.6) 

Therefore, for any t e [0, T], 

E [ qn(xj(s) - xi(s) )  b(s) ds x,] - c u(s, x,(s) ) ds 

<<. f :  ds f co(u(s, .), [y[/an) q(y)dy 

where co(f, 6) = supl x y d < 6 ] f ( x )  - f(y)[ is the modulus of continuity of a 
function f .  

The term I 4 converges to zero trivially by the boundedness of u. 

4. PROOF OF THE T H E O R E M  

The proof of propagation of chaos can be reduced to the convergence 
of the risk functionals: 

sup E[lRn(t, x i ) - R ( t ,  x i ) l ]~O as n ~ o o  (4.1) 
O < ~ t < ~  T 

namely, we get relation (2.9), observing that, for any e > O, 

;o fo E [ l r  ~i(t)l] dt<~ 1/e E[IR,( t ,  x~ ) -R( t ,  x~)[] dt+2Te 

by Lemma 3.1, setting Sl( t )=R(t ,  x~), S2(t)=R,(t ,  x~), and a = a i .  
Unfortunately, it is not possible to prove (4.1 ) directly, so we will have 

to introduce some kind of "chain or tree of interaction" (see Definition 4.1 
below) in a way inspired by Picard's scheme of approximation applied to 
the nonlinear limit equation (2.7), (~/Ot)u = 1/2 A u -  cu 2. Define u (k) as the 
solution of 

(O/c?t) u (k) = 1/2 Au (k) - -  CU (k - -  l) /,/(k) k ~> 0 
(4.2) 

u(k)(0) = ~0 with u(-1)(t)==_O 
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then, by standard analysis 

J i  m 

(see, e.g., ref. 6) 

I~l lu~(s)-u(s) l lco = ds 0 

589 

(4.3) 

where u is the solution of (2.7). 
The solution u(~(t, x) of (4.2) can be interpretated as the probability 

density to find at time t, in x, a particle, if it dies with rate cu (k ~) or, in 
other words, if it feels the risk 

R(k)(t, x~) = c u (k-l~(s, xi(s)) ds (4.4) 

We note that (4.3) implies that 

sup E[lR(k~(t, x i ) - R ( t ,  x i ) l ] ~ O  as k ~  (4.5) 
O<~t<~T 

We reformulate this procedure in the n-interacting-particles model. 

D e f i n i t i o n  4.1. "Risk at level k" R~k)(t, xj): 

R~~ xj) ~ 0, j = 1 ..... n 

~}k~)(t) = I (R~k),, xj~ < ~}, k>~O (4.6) 

c2 R~(t ,  xj) = 1/n y. q~ - xj(s)) ~k,- ~(s) ds, k >/1 
hr  �9 

Note that for k = 1, R~t~(t, xj) is the risk felt by the j t h  particle moving in 
an environment where all the particles move independently and never die, 
since ~},~2(t)- 1, So at level 1 we have easily propagation of chaos (apply 
Lemma 3.3 with v - 0). 

Among the risks R(~ ~) at different levels there is a useful relation, the 
"sandwiching" property: 

P r o p o s i t i o n  4.1. For any fixed n, t s [0, T], k/> 1, and j =  1,..., n, 

R~,2k- 2)(t, Xj)~<R~k)(t, xj)  <~ Rn(t,  Xj) <~ R(n2k + l)(t, Xj) <~ R p k - 1 ) ( t ,  Xj) (4.7) 

ProoL Since ?r . j , ,  1, using (3.2) and (4.6), we get 

R~~ t, xj) <~ R,( t, xj) <~ R~ )( t, xj) 

The result follows by recurrence on k and observing that if S, R, and U are 
nonnegative functions such that 

S(t) <~ R(t) ~ U(t) 
then 
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The introduction of the levels and the "sandwiching" property (4.7) 
help us to prove that (4.1), namely convergence of R,  to R, is verified: for 
n fixed, j = 1 ..... n, and t e [0, T], we have 

IR,(t, x j ) - R ( t ,  xj)l 

iR~2k+ 1)(/, Xj) -- R (2k+ 1)(t, xj) I 

+ IR(~2k)(t, x i) --R(2k)(t, xj)l + IR 12k+ 1)(t, x j ) -  R(t, xj)l 

+ IR(=~)(t, x~) - R(t, x~)l (4.8) 

First we take k big enough and fix it so that the last two summands 
are small [see (4.5)]. Therefore the result is achieved by the convergence 
of R(, ~) to R (~), i.e., once we prove that for k ~> 1 and for any j ~> 1 

sup E [ l R ~ ) ( t , x ~ ) - R ~ ) ( t , x ~ ) [ ] ~ O  as n ~  (4.9) 
O<<.t<~ T 

To summarize the scheme of the proof of the theorem, we draw the 
following diagram: 

R~ 2k~ < R. ~< R~# k+~ 

R (2k~ ~ R ~ R (2k+~) 

To prove the central arrow, i.e., (4.1), it is sufficient to prove all the other 
arrows. Note that the horizontal arrows are proven in (4.5). 

We need also to introduce the "independent risk" S~k)(t, xj), which is 
the risk that the particle xj feels in an environment where all the other par- 
ticles are independent and each one dies with the risk R ~ -  ~) defined in 
(4.4). 

D e f i n i t i o n  4.2. "Independent risk" S~k)(t, xj) for any n and 
t~ [0, T]: 

rl}~ = 1, j =  1 ..... n 

q~k)(t) = I{R~/~t. xj)<~A, k ~> 1 (4.10) 

s~k~(t, xj) = 1/n ~ qo(xh(s) - xAs) t  ~ l~(s) ds, k >. 1 
h r  

In this setting the proof of (4.9) can be divided into two steps thanks 
to the triangular inequality: 

~< IS~k)(t, xj)-- R~k)(t, xj)l + IR~k)(t, xj)-- S~k~(t, xj)l (4.11) 
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The convergence to zero of the first term in the rhs of (4.11) is proven 
by taking into account that the independent risk S~)(t, x;) is the same risk 
considered in Lemma 3.3 with the function v = cu I~-z) and the definition 
(4.4) of R(k~(t, x~), 

_R~(t, xj) = c .  u (~- ~(s, x~(s)) ds 

where u (k- ~) is the solution of 

(UOt) u (k- 1)= 1/2 Au (k- i ~_ cu(~- ~_~u(k- ~ ) 

u ~ -  ~(0, x) = ~o(X) 

more precisely, 

sup 
O ~ t < ~ T  

EliSiOn(t, x j ) -  .e~(t,  xj)l ~3 --, 0 as n ~  oe (4.12) 

The convergence of the second term in the rhs of the inequality (4.11) 
is proven in a slightly stronger form. Before going through the technicalities 
it is convenient to discuss the difficulties arising in the proof. They come 
from the fact that even if R~k)(t, xj) does not depend directly on ?~k- ~) (and 

?ck ~) (and therefore on aj) therefore on %), it depends indirectly on w., 
through ~},~-~, i # j .  This is the reason for introducing the "test risk" 
Q~)(t, x~, {j}) of the ith particle with respect to the particle xj, i.e., the 
risk, at the k level, that the particle x~ feels in an environment where all the 
particles except xj interact among each other but never interact with xj. We 
will refer to xj as a test particle. 

We give here a formal definition for a more general case, in which 
there is a finite number of test particles. 

Definit ion 4.3. 
subset of positive integers. For any n and t e [0, 7"] 

7~k,~n(t) = 0, k>~O, j 6 F  

~~ = 1, j ~  F c j , n  ~ J 

h ~ j  "~O 

k~>l, for all j = l , . . . , n  

yJk, Ar)(t)=I{o?,~,,~j.r)<v}, k>~ 1, j ~ F  ~ 

"Test risk" Q~k)(t, x), F) with respect to I ,  a finite 

(4.13) 
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Remark. The test risk with respect to {j}, Q(k)(t, xi, {j}), does not 
depend on aj, neither directly nor indirectly. The same holds in the general 
case for Q(,k)(t, xi, F) and o), for j e F .  Moreover, it is obvious that 
Q~k)(t, x i, ~ ) =  R~k)(t, X,). 

Therefore, in order to prove (4.9), it is sufficient to prove 

sup E[lQ~k)(t, xi, F)--S~k)(t, x i ) l ]~O as n ~  (4.14) 
O~t<~ T 

for any k ~> 1, for any i, and for any set F. The proof is done by induction. 

For k = 1, just observe that 

f2 IQ~l)(t,x~,C)-S~l~(t, x i ) l=l /n  2 qn(xh(s)--xi(s))ds 
h # i ,  h c f f  

the expectation of which quantity is estimated by (IFlc 117Zoll~ t)/n [see, 
e.g., (3.6) in Lemma 3.3]. 

Let us suppose that (4.14) holds for k and any i and any set F, then 

E[IQ~ k+ ~)(t, xj, F) - S~ k+ ')(t, x~)l ] 

<~ 1/n ~ E[qn(Xh(S) -- Xi(S)) t/~k)(s)] ds 
h r  

+l/n ~ E q~(x~(s)-x~(s))~,,, ( ) - ~  )lds 
h r  h E F c  

The first sum is bounded by (Irlc II~oll~ t)/n as in the case k =  1. 
The second sum, for a fixed h # i and h ~ F C, and for any e > O, is less 

than or equal to 

[fo q . (xh ( s ) -  xi(s)){ 1/e IQ~'(s, xh, F ) -  Q~k)(s, xh, F u { i, h} )1 E 

+ 1/e IR(g)(s, Xh) -  Q~k)(s, Xh, F u  {i, h})[ 

+ 

Here we have used Lemma 3.2 with Sl(t)=Q~k)(t, Xh, F), S2(t)= 
Rr xh), and S(t)= Q~k)(t, Xh, F u  {i, h}). 

Now 

I l l  q~(xh(s)--Xi(s)) lO(~k)(s' xh' F)-- o(~k)(s, Xh, F u  {i, h} )l ds] 1/eE 

converges to zero, by Lemma 5.3, with A = {i, h}. 
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Now observe that R(kl(s, xh) and Q(f)(s, x h, Fro {i, h}) depend only 
on x h and on (xj, aj) for j :~ i, h [here is the reason why we need to use 
Q~kl(s, xh, Fro {i, h})]. Hence 

E qn(xh(s)-  xi(s)){ 1/e IR(k~(s, x h ) -  Q(f)(s, xh, Fro {i, h})[ 

+ I{IQ(.k)(S. Xh,r~ {i,h)) ahl ~<~} } ds] 

= E If~ rEq.(x~(s)-  xi(s))I x~; (xj, ~j)for j ~ i, h] 

• {~/~ IR~(s, x~)-  Q~(~, x~, r , o  {i, h})l 

+ I {ia(k)(s, xh,Fu {i,h})- o-hi ~< e} } ds I 
1 

1 

which, using the fact that 

E[q,(xh(s) -- x~(s)) I xh; (xj, aj) for j r i, h] 

= E[q.(xh(s ) - Xi(S))lXh] ~ C 11%11 

[see (3.6)1 and the independence of Q(~k)(s, xh, F ~  {i, h}) and ah, is less 
than or equal to 

f2 c 117roll~ {1/~ E[IR(k)(s, xh ) -Sf f ) ( s ,  xh)[] 

+ 1/e E[  ISff)(s, x h ) -  O(f)(s, x h, Fro {i, h})l ] + 2e} ds 

which converges to zero uniformly in t e  [0, T], by (4.12), the induction 
hypothesis, and the arbitrariness of ~. 

5, T E C H N I C A L  L E M M A S  

The following lemma is a generalization of relation (3.5) of 
Lemma 3.3. 

Lamina  5.1. Let xi, i>~ 1, be independent Brownian motions in R d, 
each with initial probability density n o ~ L ~176 and let g be a nonnegative 
function belonging to L 1. Set 

Jm(h, t): f~ dSl f(l ds2.., f f  l dSm g(Xl(S1)-- X2(Sl)) 

• g(X2(S2) - -  X 3 ( $ 2 ) ) " "  g(Xm(Sm)-- Xh(Sm) ) (5 .1)  
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Then, if h > m, 

E[-Jm(h, t)] ~< (11~011 oo I lg l l l  t)m/(m)! 

Nappo e t  al. 

(5.2) 

which immediately implies (5.3). 

and if 1 <~h<m, m>~2, 

E[Jm(h, t)] ~< (ll~oll| t) m 1/( m -  1)! (Hglll) m-2 

x sup ~ g(y)  dy f g(z) dz G,(z + y + x)  (5.3) 
x e R d  ~ 

where Gt(z) = ~'o ds p[2s, z] and p[s, y -  x]  is the transition probability of 
a standard Brownian motion. 

Proof. First we note that, if ~ is a a-algebra independent of xt, 
i ~< m, and such that Xh is ~[-measurable, with h > m, then 

E[g(xl (s l )  -- x2(sa)) g(x2(s2) - x3(s2))""" g(Xm(Sm) -- Xh(Sm)) [ N] 

~< (11~olloo I lg l l l )  m (5.4) 

because of the independence of x i -  xi+ 1 and ~I, and since [-see (3.6)] 

E[g(Xm(Sm) -- Xh(Sm))[ 9"I] = EEg(xm(Sm) - Xh(Sm)) I Xh] ~< II •o[I ~ I[ gill 

This observation implies immediately (5.2) and allows us to reduce the 
proof of (5.3) to the case h = 1. Indeed, taking the conditional expectation 
with respect to 9.1 = a(xh, xh+l,..., Xm) and using (5.4) with r e = h - l ,  we 
get that 

x ( l [ % l l o o l l g l [ , )  h 1EEJ  m h+ l (1 ,  sh 1)3 

When h = 1 we will prove that 

E[-Jm(1, t)] ~< (ll=oll ~ t) m 1/( m - 1)! 

x I g(z,)dz~ ~ g(z~)clz~.., f g(z,,)clz,, 

x G,(zl+z2+ . . .  +zm) (5.5) 
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We can write, setting re(s, x) the probability density of the random 
variable x~(s) for any i~> 1, 

E [ g ( x l ( s l )  - x 2 ( s  1 ))  g ( x 2 ( s 2 )  - -  X3($2) )  " " " g(Xm(Sm) -- X l ( S m ) ) ' ]  

= f d x l f d y l f d x 2 f d y 2 " " i d x m f d y m  

X T~(Sm, x1) p[s1- -  Sm, y l - - X l ]  g(Yl  -- Y2) 

x{  (~) rc(si, xi) p[si_l--si, Yi-xi]g(xi-yi+l)} 
i=2 ,m 1 

XTT(Sm, Xm) p[sm 1--Sin, ym--Xm] g (xm- -X l )  

setting yl-Y2=Zl, xi-yi+l=zi for 2~<i~<m-1,  Xm--Xl=Zm, and 
taking into account that 7r(s, x) is bounded by [tr~o[l~, we get that the 
expression above is less than or equal to 

([17~01[ oo)m I f dx 1 f dz 1 f dz 2 f dy2 . . ,  f dz m ~ dy m 7~(Sm, Xl) 

(~ g(zi) p[s1--Sm, Zl-}- y2--Xl] 
i= 1,m 

(~ p[si 1--si, Yi--zi--Yi+l]p[Sm--l--Sm, Ym--Zm--X1] 
i= 2, m -- I 

Now integrating with respect t o  d y 3 . . . d y  m and using Chapman- 
Kolmogorov equality, we get that this expression is equal to 

i=l,m 

• dy2p[sI-Sm, Zl q- y2--Xl]p[s1--Sm, Y2-- E 
i= 2, m 

: ([]g0[] oO) m ' f d z l f d Z 2 . . . f d z  m (~ g ( z , ) f d x ,  
i=I.m 

i=l,m 

z,-xl] 

which, integrating in d$ m o v e r  [0, sl], noting that Gs(z)<~ G,(z) for s~< t, 
and then integrating over dSl...dsm 1 gives (5.3). 
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Lemma 
function; then 

Nappo e t  al. 

5.2.  Let  g~(x)=adg(ax), with g ~ L l n H  -1 a nonnegat ive 

t" ( .  

sup | ga(Y) dy j g~(z) G,(z + y + x) dz 
x ~ R  d ~  

is bounded  in a if d = 1 

= O( loga )  if d = 2  

= O(a d-z) if d~> 3 

Proof. Let us denote  by 

) = f f (x )  exp { - io)x } f(o) dx 

the Four ier  t ransform of f so that  

G,(O)) = (1 -- exp{ - to) a })/o)2 

Set ha(x) = g~(-x) ,  so that/~a(o)) = g~( -o ) ) .  We can rewrite 

f ga(Y) dy f ga(z) dz Gt(z + y + X) 

= (h*~(h*~G,))(x) 

= f ( ~ ) 2  ( _ o ) )  exp{io)x}(1 - exp{ - t o )  2 } )/o)~ do) 

~ f  [ga(o))l 2 (1 - e x p {  - to)2})/o) 2 do) (5.6) 

Observe that  [ga(o))[ = [~(o)/a)[ is bounded  by Hg[ll. 
So if d =  1, the quant i ty  ~ g~(y) dy ~ ga(z) dz Gt(z + y + x) is bounded  

uniformly in a, since the function co ~ ( 1 -  exp{- to )2}) /o )  2 is integrable 
in RI: 

f I~a(o))l ~ (1 - e x p {  - to)2})/o) 2 do) 

~< (llglll) 2 ~'f ( 1 -  e x p { -  to)2})/o) 2 do) 
( o  Icol ~< 1 

+fo, I > 1 (1-exp{-to)2})/o)2do)} 
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For d ~> 2 we change variable e3 = co/a and rewrite the last member  of the 
inequality (5.6) as 

a d-2  f I~a(e3)[ 2 [1 --exp{ --t(ae3)2}]/cT) 2 de3 

If d = 2 ,  we divide the integral into three parts according to le3[ ~< l/a, 
1/a< le31 ~ 1, and le31 > 1: 

fig91 <~ 1/a I ga((/))12 [1 - exp{ - t ( a e3 )  2 } "]/07)2 de3 

+ f  ]~a(e3)l 2 [ 1 - e x p { - t ( a e 3 ) 2 } ] / e 3 2 d e 3  
l/a < Io51 ~< 1 

t. 
+ J  I ga (e3 ) l  2 [1-exp{--t(ae3)2}]/e32de3 

la~l > I 

)2 f l/e3 2 de3 <~TZ 1/a 2 {ga2(/lglll) 2 } + (ltgJl~ ,/a<l~t-< 1 

Or- rio3[ >1 ]~'a~(e3)121/e32 de3 

~rct(llg]l~)2+b2(lFgll~)21og(a)+2f [R~(e3)12 (e32 + 1 ) I d a 3  
I~ol > 1 

~< ~t( [[ g[]1)2 + b2( t[ g [t l)2 log(a) + 2( ][ gl[ u -1)2 

If d~> 3, we divide the integral into two parts according to [e3[ 4%< 1 and 
le3[ > 1: 

flo~l .<, ] ga(e3)l 2 [ 1 - exp { - t(ae3) 2 } ]/e32 de3 

"~fto3[>l I'~'a(e3)[2 [1-exp{-t(ae3)2}]/e32de3 

~< (l[gll*)2 fill-<, 1/e32de3q-s tg~(e3) l  21 /e32  de3 

<~ba(llgll,)2+2f [ ,go(e3)[ 2 (e32 + 1 ) -  1 de3 
Ira{ > 1 

~< b,~(ll gll ~)" t lgl l ,  + 2(11 gll,-z-l) ~ 

where ba is a universal constant  depending on d. 
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L e m m a  5.3. Suppose that qn(x)=(a , )aq(an  x)  [see (2.3)], where 
q e L lc~ H I is a nonnegative function and an is a divergent sequence. If, 
moreover, when d~> 2, (a , )  satisfies the growth conditions (2.8): 

if d = 2 ,  loga ,  =o(n)  

if d~>3, (an)~-2=o(n)  

Then, for every k >~ 1 and m/> 1, the following relation holds: 

l i r a  E dsl ds2""  ds m 

X Qn(XI(S1) --  X2(S1) ) Qn(X2(S2) --  X3($2))... qn(Xrn(Sm) --  Xm+ X(Sm)) 

• ]Q(nk)(Sm+l, Xm+I, /~)--QffO(Sm+l, Xm+I, /~tJ A)I 1 =0  

whenever {1,..., m + 1 } is contained i n / ~ u  A [see (4.11) for the definition 
of Q~k)(s, x, F)].  

ProoL In the sequel we will drop the dependence of the integrands 
on time to simplify the notations. 

For k = 1 and for every m ~> 1, 

E ds 1 . . .  d s m q n ( X l - X 2 ) . . . q n ( X m - X m + l )  

• IQ~l)(Xm + 1 , /3  - Q(nl)(xm + 1,/~u A)]] 

~ l / r l h ~  A E[J'  dsl . . . f f  '~ l d S m q n ( X l - - X 2 ) . . . q n ( X m - - X m + l )  

;: ,] • ds,, + 1 q,(xm - xh 

el\  { 1 ..... m + 1 }, we apply (5.2) of Lemma 5.1, while if h ~ et c~ 
1}, we apply Lemma 5.2 and the growth conditions (2.8) on 

suppose that the assertion is true for k and any m/> 1; then 

f:m 
E ds~ . . .  d s m q . ( x ~ - x 2 ) . . . q . ( •  

• ]Q~k+')(Xm+ 1, F)-Q~k+l)(Xm+l,  F U  A)I] 
l 
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<~l/n ~ E dsl . . ,  dsmqn(x l -x2) . . .q , (Xm-Xm+l)  
h~A 

] x dsm+m q.(Xm + 1--Xh) 

+ 1/n ~ E dsl ... dsm q , ( x l - x 2 ) - . ,  q , (x , , , -  Xm+ 1) 
h~(Fu A) c 

f~ " ~,(k,r~A)l] • dSm+l q n ( X m + l - - X h )  ~'h,n~'(k'F)--/h,n IJ 

The first term in the rhs of this inequality is exactly equal to the case k = 1. 
By Lemma 3.2, the second term is less or than equal to 

E dsl . . ,  d smq . ( x l - x2 ) . . . q . (Xm-Xm+l )  

x dSm+l q.(Xm + 1--Xh) 
J O  

• (1/~ IQ~.~(x~, r ) - Q ~ : ~ ( x , ,  r ~ A  ~ {h))l  

+ 1/~ IQ(.~(xh, r u A ) - Q ( . ~ ( x h ,  r ~ A  u {h})l 

+ I ,~t } ] 
J 

The first two addends go to zero using the induction hypothesis for k and 
for m +  1 instead of m, noting that {1,. . . ,m+ 1, h} is contained in 
F w A  w {h} and setting Xm+2 = Xh- Finally, the third addend is less than or 
equal to e(Hn0J ] ~ ct) m+ 1/(m + 1)! for any e > 0. To prove it, we take condi- 
tional expectation with respect to ~I = a{(xj, a:), j e  (Fw A)C}. Then we use 
(5.4) with m + 1 instead of m [note that h belongs to (Fw A) c and there- 
fore h does not belong to { ! ..... m + 1 }, i.e., h > m + 1 ] and the fact that 
Q(,k)(x h, F •  A w {h }) and ah are independent and measurable with respect 
to 9.L 
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